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The oscillatory flow around a circular cylinder close to a plane wall is investigated
numerically, by direct numerical simulation of the Navier–Stokes equations. The
main aim of the research is to gain insight into the effect of the wall on the vorticity
dynamics and the forces induced by the flow over the cylinder. First, two-dimensional
simulations are performed for nine values of the gap-to-diameter ratio e. Successively,
three-dimensional simulations are carried out for selected cases to analyse the influence
of the gap on the three-dimensional organization of the flow. An attempt to explain
the pressure distribution around the cylinder in terms of vorticity time development
is presented. Generally, the time development of the hydrodynamic forces is aperiodic
(i.e. changes from cycle to cycle). In one case (Re =200), when the distance of the
cylinder from the wall is reduced, the behaviour of the flow changes from aperiodic
to periodic. When the cylinder approaches the wall the drag coefficient of the in-line
force increases in a qualitative agreement with the results reported in literature. The
transverse force is not monotonic with the reduction of the gap: it first decreases down
to a minimum, and then increases with a further reduction of the gap. For intermediate
values of the gap the decrease of the transverse force is due to the reduction of the
angle of ejection of the shedding vortices caused by the closeness of the wall; for
small gaps the increase of the transverse force is due to the strong interaction between
the vortex system ejected from the cylinder and the shear layer generated on the wall.

Three-dimensional simulations show that the flow is unstable with respect to
spanwise perturbations which cause the development of three-dimensional vortices
and the distortion of the two-dimensional ones generated by flow separation.

In all the analysed cases, the three-dimensional effects on the hydrodynamic forces
are clearly attenuated when the cylinder is placed close to the wall.

The spanwise modulation of the vortex structures induces oscillations of the
sectional forces along the axis of the cylinder which in general are larger for
the transverse sectional force. In the high-Reynolds-number case (Re = 500), the
reduction of the gap produces a large number of three-dimensional vortex structures
developing over a wide range of spatial scales. This produces homogenization of the
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flow field along the spanwise direction and a consequent reduction of the amplitudes
of oscillation of the sectional forces.

1. Introduction
The oscillatory flow around a circular cylinder placed close to a plane wall has

been studied by researchers in different scientific areas because of its remarkable
engineering applications. Indeed, this flow can be considered, for example, as the
prototype of the complex wave generated flow around offshore pipelines lying close
to the sea bed.

The studies of the oscillatory flow around a cylinder in an unbounded flow field
(wall-free cylinder) produced a basis of knowledge that is of fundamental importance
for the present work (see Sumer & Fredsøe 1997). Therefore, our review starts by
briefly recalling such studies and continues with those concerning the oscillatory flow
around a cylinder placed close to a wall.

The sinusoidal oscillatory flow around a wall-free circular cylinder is characterized
by two dimensionless parameters, namely the Reynolds number Re = U ∗

0 D∗/ν∗ and
the Keulegan–Carpenter number KC = U ∗

0 T ∗/D∗, where U ∗
0 is the amplitude of the

velocity oscillations far from the cylinder, T ∗ is the period of fluid oscillations, D∗ is
the cylinder diameter and ν∗ is the kinematic viscosity of the fluid. The dimensionless
parameter β , defined as β = D∗2/(ν∗ T ∗) = Re/KC , is often introduced instead of Re
(an asterisk denotes dimensional quantities).

The oscillatory flow around a cylinder in an unbounded flow has been extensively
investigated by a number of authors (see among others Williamson 1985; Sarpkaya
1986; Tatsuno & Bearman 1990; Justesen 1991; Dütsch et al. 1998; Nehari, Armenio
& Ballio 2004a).

For very small KC numbers the flow does not separate. When the KC number is
still small but the Reynolds number is sufficiently large the flow becomes unstable
with respect to three-dimensional perturbations and separates in the form of
three-dimensional mushroom-shaped vortices equispaced along the axial direction
(Sarpkaya 1986). For larger values of KC , vortex shedding occurs and different
regimes are detected, characterized by diagonal ejection of vortex structures and
three-dimensional patterns. As regards the present study, regimes F and G, described
by Tatsuno & Bearman (1990), are relevant. In regime F the vortices are shed on
two opposite sides of the cylinder and ejected along a diagonal direction whose
inclination becomes larger as the KC number increases. In regime G vortices are
shed at every half-cycle and are ejected in the transverse direction in a manner
similar to that observed by Williamson (1985) at higher values of the β number.

In the case of a cylinder placed close to a wall a third dimensionless parameter is
necessary to characterize the flow, i.e. the gap-to-diameter ratio e = e∗/D∗, where e∗ is
the distance between the cylinder surface and the wall. Sarpkaya (1976) measured the
hydrodynamic forces for 0 � KC � 40, 4 × 103 � Re � 25 × 103 and 0.01 � e � 1. For a
fixed value of the Reynolds number the drag coefficient CD of the Morison equation
(see (2.6)) is nearly equal to that of the unbounded flow for e larger than 1, whereas
CD increases with the reduction of the gap. According to the results of Sarpkaya
(1976) the transverse force can be large when the cylinder is near the wall and has a
weak dependence on the Reynolds number for Re < 25 × 103.

The in-line and the transverse forces at higher Reynolds numbers were studied
experimentally in Sarpkaya (1977). In such a work, for KC = 40 and Re � 1.5 × 103

and for all the considered values of e, it has been shown that when Re increases, CD
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decreases while CM increases. For 1.5 × 103 < Re < 106, neither the coefficients change
appreciably. A similar qualitative behaviour type has been observed for KC = 100.
Lastly, for all the considered values of Re and KC both the drag coefficient and the
inertia coefficient increase as e decreases.

Measurements of forces on a cylinder oscillating in a fluid close to a wall have been
performed by Ali & Narayanan (1986) who found that CD decreases with increasing
values of KC . We also recall the work of Justesen et al. (1987) who considered a
rough pipe close to a wall and immersed in an oscillating fluid.

The effect of the wall’s proximity on the oscillatory flow around a cylinder has
also been described by Sumer, Jensen & Fredsøe (1991), who performed a series of
experimental visualizations of the motion of the vortices in the ranges Re = 103–104,
KC = 4–24 and force measurements in the ranges Re =(0.4–1.1) × 105, KC = 4–24.
The above mentioned authors found that the vortex shedding regimes for wall-free
circular cylinders, described by Williamson (1985), are modified by the wall proximity
when the gap-to-diameter ratio is below a quantity of order one. Indeed, the transverse
vortex street that for a free cylinder is observed in the range 7 <KC < 13 disappears
for e < 1.7. The vortex shedding, which characterizes the range of KC > 7, persists for
values of e∗/D∗ equal to 0.1 if the KC number remains below 20. When the cylinder
is placed on the wall, the vortex development appears qualitatively independent on
KC . As reported by the authors, in the last case a vortex pair is formed at each
half-cycle prior to the creation of the lee-wake vortex behind the cylinder.

The previous works have shed much light on many characteristics of the oscillatory
flow around a cylinder close to a wall. However, a detailed knowledge of the vorticity
dynamics and its influence on the hydrodynamic forces is still lacking, mainly because
it requires an analysis that cannot be easily tackled by means of experimental ap-
proaches. On the basis of such considerations we have carried out the present research
with the aim of understanding the modifications undergone by the vorticity field and
the forces acting on the cylinder when the latter is placed near a solid wall. The study
is carried out solving numerically the three-dimensional unsteady Navier–Stokes
equations, for moderate values of KC and low values of Re numbers. Two different
regimes of the Tatsuno & Bearman (1990) map have been considered, characterized
respectively by KC =10, Re = 200 (regime F ) and KC =10, Re = 500 (regime G). As
shown by the previous authors, these regimes exhibit three-dimensional flow features.

In order to optimize the requested computational efforts, first we carry out two-
dimensional simulations spanning a wide range of values of the gap e with the aim
of understanding how the presence of the wall modifies the vortex shedding and the
components of the force induced over the cylinder.

Successively, for selected cases, three-dimensional simulations are carried out with
the aim of detecting the effect of the gap e on the three-dimensional organization of
the flow field and on the induced forces.

2. Formulation of the problem
We consider a cylinder placed close to a flat wall and immersed in a fluid that far

from the cylinder oscillates along the direction parallel to the wall and orthogonal
to the axis of the cylinder. The free-stream velocity is U ∗

∞ = U ∗
0 sin(ω∗t∗), where ω∗ is

the angular frequency of the fluid oscillations and t∗ is the time. Figure 1 illustrates
the problem under investigation together with the frame of reference, whose axes are
referred either as (x∗

1 , x
∗
2 , x

∗
3 ) or as (x∗, y∗, z∗).

The velocity components in the x∗
1 , x∗

2 and x∗
3 directions are denoted by u∗

1, u∗
2 and

u∗
3 respectively, and the pressure by p∗. The problem is formulated in dimensionless
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Figure 1. Sketch of the problem.

form by introducing the following variables:

(x1, x2, x3) =

(
x∗

1 , x
∗
2 , x

∗
3

D∗

)
, (u1, u2, u3) =

(
u∗

1, u
∗
2, u

∗
3

U ∗
0

)
, t = t∗ U ∗

0

D∗ , p =
p∗

�∗U ∗2
0

.

(2.1)

The flow field is studied through numerical integration of the dimensionless Navier–
Stokes equations recast in curvilinear coordinate form:

∂Um

∂ξm

= 0, (2.2)

∂J −1ui

∂t
+

∂Umui

∂ξm

=
∂

∂ξm

(
J −1 ∂ξm

∂xi

p

)
+

1

Re

∂

∂ξm

(
Gmn ∂ui

∂ξn

)

+ δ1,iJ
−1 2π

KC
cos

(
2π

KC
t

)
. (2.3)

In (2.2) and (2.3) ui is the i (i = 1, 2, 3) component of the velocity, ξm

(m =1, 2, 3) is the coordinate in the computational domain, J is the Jacobian
of the transformation from the physical domain to the computational one,
Um = J −1(uj∂ξm/∂xj ) is the non-dimensional contravariant flux through the plain
ξm = const, Gmn = J −1(∂ξm/∂xj )(∂ξn/∂xj ) is the mesh skewness tensor and finally δi,j

is the isotropic tensor.
Equations (2.2) and (2.3) are integrated making use of the curvilinear-coordinate

fractional step method of (Zang, Street & Koseff 1994; Nehari et al. 2004a) in
conjunction with centred finite difference approximation of the spatial derivatives. The
governing equations are solved in a domain of size Lx1

, Lx2
and Lx3

in the x1, x2 and
x3 directions, respectively. The adopted numerical grid employs nx1

, nx2
and nx3

grid
points along the x1, x2 and x3 directions respectively and is of the H-type (see figure 2)
which allows a study of the present flow very efficiently as the boundaries of the grid
are rectilinear. The grid is generated using the method proposed by Sorenson (1980)
allowing the distance of the first grid point off the boundary to be set and keeping
orthogonality of the grid lines to the boundary.

As regards the boundary conditions we distinguish between the case of a wall-free
cylinder and that of a cylinder placed close to a wall. In the first case, periodic
boundary conditions are used in the three directions. In the second case, the no-slip
condition is enforced over the solid wall, whereas a free-slip condition is imposed at
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Figure 2. (a) Numerical grid; (b) close-up view of the numerical grid around the cylinder.

the upper boundary of the computational domain; periodic boundary conditions are
employed in the x1 and x3 directions. In both cases the no-slip condition is set over
the cylinder. The dimensions of the computational domain Lx1

and Lx2
are chosen

to be large enough to avoid detectable effects of the periodicity condition on the
vorticity field.

The in-line force F ∗
1 and the transverse force F ∗

2 , acting on the cylinder in the
directions x∗

1 and x∗
2 respectively, are computed by integrating the pressure and the

viscous stresses over the surface A of the cylinder as follows,

F1 =
F ∗

1

�∗U ∗2
0 D∗L∗

x3

=
1

Lx3

(
−

∫
A

pn · i dA +

∫
A

1

Re

∂uτ

∂n
s · i dA

)
+

π

4

dU∞

dt
, (2.4)

F2 =
F ∗

2

�∗U ∗2
0 D∗L∗

x3

=
1

Lx3

(
−

∫
A

pn · j dA +

∫
A

1

Re

∂uτ

∂n
s · j dA

)
, (2.5)

where A extends across the entire length of the cylinder in the x3 direction which is
assumed to be equal to the width of the computational domain Lx3

, i and j are the
unit vectors in the streamwise and transverse directions, n and s are the unit vectors
normal and tangential to the body surface and uτ is the velocity component in the
s direction. The last term on the right-hand side of (2.4) is the Froude–Krylov force
caused by the pressure gradient that drives the flow.

The in-line force can be approximately evaluated by the well-known Morison
equation,

F ∗
1 =

1

2
�∗ D∗L∗

x3
CDU ∗

∞ | U ∗
∞ | +

πD∗2

4
L∗

x3
�∗(CM + 1)

dU ∗
∞

dt∗ , (2.6)

if the drag coefficient CD and the hydrodynamic mass coefficient CM are known. After
introducing the expression of U ∗

∞, (2.6) in dimensionless form reads as

F1 =
1

2
CDsin

(
2π

KC
t

)∣∣∣∣ sin

(
2π

KC
t

)∣∣∣∣ +
π2

2KC
(CM + 1) cos

(
2π

KC
t

)
. (2.7)

We use a three-dimensional solver in all cases examined in order to avoid
dependence of the results on the numerical method employed for the solution of
the Navier–Stokes equations. The simulations classified as two-dimensional were run
using a cylinder length equal to 1 and four grid cells in the axial direction. This
approach is widely in use in CFD laboratories (see among others Zang et al. 1994).
It has been verified that the solution was strictly two-dimensional, namely the axial
velocity component remained close to zero during the simulations. The simulations
classified as three-dimensional were run using a long cylinder (Lx3

= 6–10) and a
number of cells in the axial direction such to solve the three-dimensional modulations
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Re = 200 Re = 500

e Lx1
Lx2

Lx3
nx1

nx2
nx3

e Lx1
Lx2

Lx3
nx1

nx2
nx3

∞ 46 32 1.0 320 160 4 ∞ 46 46 1.0 320 320 4
0.25 23 8.75 − 260 112 − 0.158 36 12.658 − 260 112 −
0.31 − 8.81 − − − − 0.25 − 12.75 − − − −
0.375 − 8.875 − − − − 0.375 − 12.875 − − − −
0.5 − 9 − − − − 0.5 − 13 − − 120 −
0.625 − 9.125 − − − − 0.625 − 13.125 − − 120 −
0.75 − 9.25 − − − − 0.75 − 13.25 − − 120 −
1.125 − 9.625 − − 120 − 1.125 − 13.625 − − 130 −
1.5 − 10 − − 120 − 1.5 − 14 − − 130 −

Table 1. Values of the parameters of the two-dimensional numerical simulations.

of the vortex structures. The validation of the numerical code has been extensively
carried out in Nehari et al. (2004a) and will not be repeated here.

We first discuss the results of the two-dimensional simulations and then the three-
dimensional effects. In tables 1 and 2 the parameters of the simulations for the
two-dimensional and the three-dimensional cases respectively are reported. It has
to be pointed out that the detailed analysis of the vorticity structures in the three-
dimensional field, together with the need to reproduce a large number of periods of
oscillations and the need to simulate different values of the gap, has restricted the
analysis at values of the Reynolds number which are smaller than those of practical
applications. In order to give an idea of the computational costs, we highlight that to
simulate the case Re = 500 and e = 1.5 required about 20 h per cycle on an AMD Dual
Core Processor 4600+; since about 150 cycles have been computed (see figure 27), the
simulation required more than 4 months. It clearly appears that by using the available
computational resources a further increase of the Reynolds number beyond 500 would
have involved prohibitive computational costs. Larger values of the Reynolds number
could be simulated by assuming a two-dimensional flow; however, as the Reynolds
number increases beyond 500 three-dimensional effects become very important and
they cannot be reproduced by a two-dimensional simulation.

3. Discussion of the results obtained by two-dimensional numerical simulations
3.1. Re =200

The present flow belongs to regime F in case of a wall-free cylinder. Nine cases have
been considered characterized by different distances from the wall.

Table 1 shows that smaller computation domains are chosen in simulations
characterized by finite values of e. This choice has been made because the presence of
the wall reduces the distance over which substantial vorticity is advected, in particular
along the mean flow direction. However, in order to verify that the numerical results
are not affected by this choice, two cases (e = 1.5, 0.625) have been repeated using a
large domain size (Lx1

= 46 and Lx2
= 16.125). It has been ascertained that the time

development of the in-line and of the transverse forces (not reported here) are not
appreciably influenced by the domain size.

We start with the analysis of the wall-free cylinder (e = ∞). Present results about the
vorticity dynamics (not shown here) compare very well with that shown in figure 12
of the paper of Dütsch et al. (1998) where we can observe that a vortex pair is
generated at every half-cycle and is convected by the free-stream flow and by the
self-induced velocity in a direction that substantially deviates from the direction of
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Figure 3. Time development of the in-line force F1 (a) and of the transverse force F2 (b) for
Re = 200 and e = ∞; n indicates the number of cycles.

the flow oscillation. The mean angle between vortex shedding and the flow direction
increases with KC , although the direction of the wake is not constant but slightly
changes from cycle to cycle.

In figure 3 a quite regular variation of the in-line and of the transverse forces can
be observed during the initial 100 cycles. Indeed, the angle of the wake undergoes
small oscillations during such a time interval. At n about equal to 100, the flow enters
a regime in which the direction of the wake is subject to large oscillations, which, in
turn, causes the loss of regularity of the hydrodynamic forces.

Dütsch et al. (1998) showed the first regular cycles but reported that the flow is
weakly stable; therefore strong cycle-to-cycle variations are possible. Nehari et al.
(2004a) showed that the loss of regularity is due to the switching from a vortex
pattern to its mirror image at irregular time intervals. Moreover, according to the
above-mentioned authors, the switching is due to a two-dimensional instability of the
flow as it can be reproduced by a pure two-dimensional mathematical model.

Dütsch et al. (1998) computed the drag and the hydrodynamic mass coefficients
by using the data in the time interval in which the forces oscillate quite regularly
and obtained CD =1.81–1.84 and CM = 1.02–1.04. In the present study, by using the
results included in the time interval 5 � n � 80, we obtained CD =1.82 and CM = 1.04,
which are in a fairly good agreement with those reported by Dütsch et al. (1998). A
good agreement has also been observed as regards the transverse force.

When the cylinder is placed close to the wall and e = 1.5, the mechanism that
causes the ejection of a vortex pair along a diagonal direction at every half-cycle is
still present, although, due to the impenetrability constraint introduced by the wall,
the vortices remain confined in the cylinder region (see figure 4).

The vortices shed when the flow is directed from the left to the right travel
upwards, while the vortices shed when the flow is directed from the right to the
left travel downwards and thus strongly interact with the wall; as a result, many
of such vortices can be observed on the left side of the cylinder. A consequence of
this behaviour is that the time development of the in-line force during a half-cycle is
slightly different from that in the previous half-cycle. However, for e = 1.5 the gross
features of the in-line and of the transverse forces remain similar to that shown in
figure 3 for the case of a wall-free cylinder (see figure 5).

This behaviour holds for further reduction of the gap. When e is reduced to 0.625,
the interaction between the vorticity produced on the wall and that produced on the
cylinder becomes stronger and the separation of the wall boundary layer becomes
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Figure 4. Vorticity field at different phases during the 140th cycle for Re =200 and
e = 1.5; continuous line: positive vorticity, dashed line: negative vorticity; 
Ω = 0.35;
(a) φ = 0, Ωmax = 15.50, Ωmin = −10.49; (b) φ = π/2, Ωmax = 32.17, Ωmin = −36.99; (c) φ = π,
Ωmax = 11.30, Ωmin = −11.49; (d ) φ = 3π/2, Ωmax = 35.54, Ωmin = −33.45.
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Figure 5. Time development of the in-line force F1 (a) and of the transverse force F2 (b) for
Re = 200 and e = 1.5; n indicates the number of cycles.

evident. The vorticity field exhibits qualitative similarities with those described by
Sumer et al. (1991), although the flow parameters are significantly different in the two
cases.

Specifically, with reference to figure 6(a), at φ = 0 positive vorticity starts to be
produced on the lower side of the cylinder. At the same time vortex I is washed
under the cylinder and merges with the positive vorticity to generate vortex A

(figure 6b). Such a vortex grows interacting with the negative vorticity produced on
the wall. Because of this interaction at about φ = π (figure 6e), the negative vorticity
rolls up and generates vortex B which couples with vortex A. The vortex pair tends
to move towards right because of the self-induced velocity, while the part of vortex
A closer to the cylinder tends to move upwards because of the negative vortex C

which has been generated by flow separation on the upper side of the cylinder. Then
vortex A is split into two parts, the first one remains attached to the cylinder (vortex
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Figure 6. Vorticity field at different phases during the 120th cycle for Re = 200 and
e =0.625; continuous line: positive vorticity, dashed line: negative vorticity; 
Ω =0.35;
(a) φ = 0, Ωmax = 17.80, Ωmin = −16.93; (b) φ = π/4, Ωmax =26.12, Ωmin = −35.31; (c) φ = π/2,
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Ωmax = 15.76, Ωmin = −29.28; (f ) φ = 5π/4, Ωmax = 32.91, Ωmin = −42.24; (g) φ = 3π/2,
Ωmax = 36.61, Ωmin = −33.08; (h) φ = 7π/4, Ωmax = 11.82, Ωmin = −15.29.

A1), while the second part (vortex A2) remains coupled with vortex B (see figure 6e).
When the flow reverses, vortex A1 is washed over the cylinder and merges with the
positive vorticity produced on the upper side of the cylinder. Under the action of
vortex C, the positive vorticity is shed and generates vortex D (see figure 6e–g). The
further evolution of vortices C and D can be observed by taking advantage of the
‘time periodicity’ of the flow and looking at figure 6(a) where, to avoid confusion,
vortices C and D are labelled as E and F respectively. Starting from figure 6(g),
on the lower side of the cylinder we observe the growth of negative vorticity. When
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Figure 7. Time development of the in-line force F1 (a) and of the transverse force F2 (b) for
Re = 200 and e = 0.625; n indicates the number of cycles.

this vorticity becomes large enough, it induces the separation of the wall boundary
layer and the formation of a vortex pair (vortices G and H in figure 6h). We can still
observe these vortices in figure 6(a). During the acceleration phase vortex H tends
to merge with vortex F while vortex G merges with vortex C (figure 6d ). It can be
observed that during a half-cycle the flow is not the mirror image of that during the
following half-cycle. We can easily realize this fact by comparing figure 6(a) (φ = 0)
with figure 6(e) (φ = π).

This result is due to the presence of the wall which tends to align the vortex street
with its own direction in an asymmetric way, namely the angle of ejection on the
right decreases more than that on the left side of the cylinder. Such an alignment also
produces a significant variation of the forces acting over the cylinder. Specifically, in
figure 7 we observe that while the amplitude of the oscillating in-line force is slightly
larger than that obtained for e =(∞, 1.5), the amplitude of the transverse force is
significantly reduced.

This change can be explained in view of the variation of the angle of shedding.
Indeed, the in-line and transverse forces are respectively proportional to cos(θ) and
sin(θ), with θ being the angle of vortex shedding with respect to the direction of
oscillation (Nehari et al. 2004a). When θ is small, a reduction of the angle causes a
small variation of the cos(θ) and a large variation of the sin(θ) thus explaining the
small increase of the in-line force and the large reduction of the transverse one. This
behaviour continues to hold with further decrease of the gap e. When the cylinder is
very close to the wall (e =0.25), the flow undergoes large modifications with respect
to the previous cases. Generally, the effect of the wall boundary layer is to increase
the amount of vorticity ejected into the flow which in turn affects the forces in a
complicated manner. The vorticity dynamics around the cylinder can be described as
follows.

At φ = 0 vortex A and vortex C start to grow on the lee side of the cylinder. Vortex
A grows less than the vortex A of figure 6 because a smaller gap causes an increase
of the viscous resistances and also because in the case shown in figure 6 vortex I

is washed under the cylinder while in the present case vortex I is washed over the
cylinder and does not feed vortex A. The interaction between vortex A and vortex C

causes vortex A to be convected over the cylinder (see figures 8d and 8e). When the
flow reverses, vortex A merges with the positive vorticity that develops on the upper
side of the cylinder and contributes to the formation of vortex B . During the second
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half-cycle, the negative vorticity that develops on the lower side of the cylinder (vortex
D in figure 8g) causes the separation of the wall boundary layer and the generation
of vortex E (figure 8h) which, very soon, merges with vortex B and generates vortex
I as in figure 8(a). It can be noted that the merging of the vortices generated by the
wall boundary layer separation with the one generated on the cylinder (vortex E and
vortex B in figure 8h) is a peculiarity of the flow for small values of e; indeed this
phenomenon is absent for e = 0.625 as it can be observed in figure 6 where vortex
H does not merge with vortex I . Therefore, one of the effects of the wall boundary
layer when e is sufficiently small is to increase the strength of the vortices that are
washed over the cylinder which make an important contribution to the hydrodynamic
forces. Present results show qualitative agreement with the experimental visualization
of Sumer et al. (1991). For example, vorticity dynamics shown in figure 6 can be
compared with that shown in figure 12(b) for e = 0.1 of the previous cited authors.
During the acceleration phase the vortices generated on the lower side of the cylinder
(vortex L in figure 12b, vortex A in the present figure 6) develop similarly. Indeed,
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Figure 9. Time development of the in-line force F1 (a) and of the transverse force F2 (b) for
Re = 200 and e = 0.25; n indicates the number of cycles.

the vortex L grows until it breaks into two vortices, one remains close to the cylinder
(vortex N) and the other becomes a free vortex. In the following vortex N is washed
over the cylinder in the same manner as vortex A1 in figure 6. Overall, in both cases
the closeness of the cylinder to the wall causes an alignment of vortex shedding with
the wall and thus a dramatic reduction of the angle of shedding θ .

The dramatic changes of the flow when e = 0.25 are more evident in figure 9 where
the time development of the forces is reported.

We observe a noticeable increase of the in-line force, which can be partially
explained by the reduction of the angle of shedding, and a large reduction of the
negative amplitude of the transverse force. Furthermore, by comparing the present
case with the previous ones, we observe that for e = 0.25 the time development of
the forces is much more regular. In particular for large n the forces get in a regime
in which they oscillate periodically. This result shows that for the present values of
the Reynolds and of the KC number, when the cylinder moves from large distance
towards the wall, the character of the flow changes from aperiodic to periodic. The
wall thus acts towards a regularization of the vortex shedding around the cylinder.
A similar effect has been previously observed in a case that differs from the present
one, namely the oscillatory motion around an infinite array of cylinders aligned with
the flow direction (Nehari et al. 2004b). In that case as well, a strong reduction of
the gap between two successive cylinders of the array produces a regularization of
vortex shedding, eliminates irregular switching of the diagonal patterns and generates
a periodic oscillation which is nearly unchanged from cycle to cycle. The common
features of the two flow fields is the strong interaction between the vorticity produced
by two no-slip surfaces very close to each other.

To gain insights on the variation of the forces with the parameter e, in figure 10
we show typical evolutions along a cycle of the forces and of the free-stream velocity
for the cases characterized by Re =200 in table 1.

Note that since variations in the magnitude of the forces appear from cycle to
cycle, the figures are not rigorously indicative of the variation of the magnitude of
the mean forces from case to case. Figure 10 shows that the in-line force qualitatively
behaves in a similar way in all cases. Generally, the transverse force shows three
oscillations during one period and it is characterized by positive and negative values
of the same order of magnitude. However, when e is small (for example e = 0.25) only
two oscillations appear and the transverse force is mostly positive.
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Figure 10. Time development within a cycle of the in-line force F1 (continuous line) and of
the transverse force F2 (dashed line) for Re = 200. The free-stream velocity U∞ is shown as a
reference.

To gain more insights into the mechanism that produces the transverse force, in
figures 11 and 12 the pressure around the cylinder in a polar plot is shown for
e = 0.625 and e = 0.25 respectively. In these figures the first azimuthal harmonic
component of the pressure is also plotted because it is the only one that produces a
non-vanishing force on the cylinder.

With reference to figure 11 we observe that at φ =0 the pressure distribution is such
that the transverse force is very small in accordance with figure 10 (e = 0.625). As the
flow accelerates, the pressure grows on the front side and diminishes on the lee side of
the cylinder (figure 11b). However, the pressure is not symmetrically distributed with
respect to the direction θ = 0, where θ is the azimuthal angle. In figure 6(b), vortex
A appears to be larger than vortex C; this causes a larger drop of pressure on the
lower side of the cylinder and then the appearance of a negative transverse force (see
figure 10 for e = 0.625 and figure 11b).

At φ = π/2, vortex A partially detaches from the cylinder giving rise to an increase
of pressure on the lower side. In the meanwhile the growth of vortex C produces a
decrease of pressure on the upper side. Moreover, at this phase, because of vortex
H , the stagnation point moves close to the wall, at about θ =210◦. All these effects
produce an increase of the transverse force which becomes positive as shown in
figure 10 (e = 0.625). At φ = 3π/4 the transverse force is still positive because vortex
C continues to cause a low pressure in the upper part of the cylinder.

As regards figure 12, where the pressure distribution for e = 0.25 is shown, it can
be observed that at φ = 0 the transverse force shows a low value. At φ = π/4 the
stagnation point moves closer to the wall and a positive transverse force is then
produced. The shift of the stagnation point close to the wall seems to be due to the
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circulation associated with the vortex I in figure 8(b). The transverse force becomes
again significant at φ = 5π/4 (not shown here) when a vortex causes again the shift
of the stagnation point close to the wall.

In practical applications, the in-line force is evaluated by means of the Morison
equation (2.7) which requires the knowledge of the drag and of the hydrodynamic
mass coefficients.

In all the cases the values of CD and CM have been computed by using the data
obtained after the flow attained a regime condition. The number of cycles needed to
attain such a condition is not larger than 100 cycles for Re = 200 and it is equal to
few cycles for Re = 500. It is worth pointing out that here the term ‘regime condition’
is used in a statistical sense to indicate that the values of the coefficients are nearly
unchanged when calculated considering additional sets of oscillations.

In figure 13 it can be observed that generally the coefficients CD and CM increase as
the cylinder approaches the wall. This trend has also been observed by Sumer et al.
(1991) at higher values of the Reynolds number and it is in agreement with the time
development of the forces shown in figure 10. An important practical consequence
of the former result is that when performing a pipeline design, it could not be
precautionary to evaluate the in-line force by introducing in the Morison equation
the values of CD and CM as determined for wall-free cylinders. A dramatic variation
of the Morison coefficients with the gap has also been observed in Nehari et al.
(2004b) in the case of array of cylinders aligned with a unidirectional oscillatory flow.
In figure 13 it is also shown that the asymptotic value of CM is very close to that
obtained for e = 1.5. A measure of the amplitude of the transverse force could be
given by its root mean square F2r.m.s.

(Williamson 1985) defined as

F2r.m.s.
=

√
1

T

∫ T

0

F 2
2 dt . (3.1)

However, when the cylinder is close to a wall the previous expression is not appropriate
as a measure of the amplitude of F2 because the positive and the negative amplitudes
of F2 are statistically different. Therefore, in the present study we have computed the
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positive amplitude F +
2 and the negative amplitude F −

2 by using the formulas

F +
2 =

√
1

T +

∫ T +

0

F 2
2 dt+, F −

2 = −

√
1

T −

∫ T −

0

F 2
2 dt−, (3.2)

where the first integral is performed during the time intervals in which F2 is positive,
while the second one is performed during the time intervals in which F2 is negative.
In figure 14 the values of F +

2 and F −
2 are reported versus e for Re = 200 and also for

other cases that will be considered in the following.
By inspecting the behaviour of F +

2 and F −
2 as functions of e, we observe that as

the cylinder approaches the wall, the negative amplitude tends monotonically to zero
while the positive one exhibits a relative minimum and then tends to increase. Going
back to figure 13, the increase of the force coefficients when the cylinder is placed
close to the wall may be related to the decrease of the ejection angle of the vortices
due to the impenetrability condition of the wall. The alignment of the direction of
ejection with the wall also induces a decrease of the transverse force that is more
evident when e is reduced from 0.625 to 0.375 (see figure 14). When e is further
reduced, the phenomenon described above is partially overwhelmed by the viscous
effects induced by the no-slip condition on the cylinder and on the wall which causes
the increase of F +

2 and the decrease of F −
2 .

3.2. Re =500

In the case of a cylinder in an unbounded flow, this case belongs to the regime G

of the map of Tatsuno & Bearman (1990). We have considered nine different values
of e reported in table 1 together with the parameters of the simulations. Note that
the case e = 0.158 has been considered, and this value gives a ratio e∗/δ∗ equal to the
case e = 0.25 discussed in regime F , where δ∗ is the conventional thickness of the wall
boundary layer given by

√
ν∗T ∗/π.

The analysis of the vorticity dynamics for e = ∞ has shown that vortices are mainly
ejected on one side of the cylinder in a manner similar to that described by Tatsuno
& Bearman (1990) for regime G. Since most of the characteristics of the vorticity
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dynamics for finite value of e are similar to that described for Re =200, we limit
ourselves to discussing the case e =0.25 which is shown in figure 15.

In particular, it can be noted that the evolution of vortex A is more similar to that
of vortex A for Re = 200 and e = 0.625 (figure 6) rather than to that of vortex A for
Re =200 and e = 0.25 (figure 8). The previous result can be explained by considering
that the increase of the Reynolds number causes a reduction of the viscous resistances
and thus, as regards the flow in the gap, it has an effect similar to that of an increase
of e. For this reason, in the present case the evolution of the vorticity shows some
similarities with that reported in figure 6.

In figure 16 we report the time development of the hydrodynamic forces during
a cycle for all the examined cases. Generally, the amplitude of the transverse force
is larger than that obtained for Re = 200 while the in-line force appears to be
slightly reduced. However, due to the strong cycle-to-cycle variation of the forces an
appropriate comparison between the two cases can be performed only on the basis
of figures 13 and 14 where the force coefficients computed by using all the available
cycles are shown. In such figures we observe that as the Reynolds number increases,
CD and CM decreases while the amplitude of the transverse force increases.

We also observe the rapid increase of the drag and of the hydrodynamic mass
coefficients and a decrease of the transverse force when e is reduced to below 0.75,
which can be ascribed to the reduction of the ejection angle of the vortices shed from
the cylinder. The increment of the transverse force for very small values of the gap
can be again ascribed to the strong interaction between the vorticity produced on
the wall and that ejected by the cylinder, interaction which partially overwhelm the
mainly inviscid effect due to the reduction of the ejection angle with the decrease of
the gap.

A difference from the previous case (regime F ) is that even for e = 0.158 the
time development of the hydrodynamic forces is aperiodic in contrast to the case
e = 0.25 and Re =200. We remind the reader that e =0.158 is equivalent to e = 0.25
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and of the transverse force F2 (dashed line) for Re = 500. The free-stream velocity U∞ is shown
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for Re = 200 as regards the ratio e∗/δ∗. It was not investigated whether a smaller
value of e exists such that the flow becomes time-periodic. However, our results show
that the regularization effect does not depend only on the ratio between the gap
and the diffusive length scale δ∗. Before closing this section, we must highlight that
even though present values of the Reynolds number are much smaller than those of
real-life pipelines, we feel that our results, besides improving our understanding of
the oscillatory flow around a cylinder close to a wall at low Re numbers, can provide
qualitative information which retain their validity even at higher values of Re. For
example, the fact that the presence of the wall decreases the angle of emission of
vortex shedding has to be considered as a general result.

4. Analysis of the three-dimensional field
As demonstrated by the experiments of Tatsuno & Bearman (1990) the cases herein

investigated exhibit a three-dimensional character. How this three-dimensionality
affects the flow field and the hydrodynamic forces has been investigated by Nehari
et al. (2004a) for a cylinder in an unbounded fluid in regime F . In the present section
we examine the effect of the wall on the three-dimensional structures of the flow field
and the associated modulations of the hydrodynamic forces along the axial direction
both in regime F and in regime G.

The previous two-dimensional simulations have shown that the flow is characterized
by spanwise vortices shed from the cylinder and by other similar vortices generated
by the interaction of the latter with the shear layer generated on the wall. When the
flow is free to develop spanwise perturbations, the previous character is still preserved
even though three-dimensional vortices appear which cause axial modulation of
the spanwise vorticity. At very low KC number (Honji 1981; Sarpkaya 1986), a
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Re e Lx1
Lx2

Lx3
nx1

nx2
nx3

200 0.25 23 8.75 10 260 112 60
− 0.625 − 9.125 − − − −
− 1.5 − 10 − − 120 −

500 0.25 36 12.75 6 − 112 120
− 1.5 − 14 − − 130 −

Table 2. Values of the parameters of the three-dimensional numerical simulations.

three-dimensional instability causes the generation of mushroom-shaped vortices on
the cylinder as already discussed in § 1. This instability has been explained by Hall
(1984) by assuming that KC is small and β is large. Indeed, Hall showed theoretically
that a spanwise instability arises when the Taylor number (KC 2√

β) (the ratio
between the centrifugal and the viscous forces) exceeds a certain value of order one.
This instability takes place inside the viscous boundary layer and is localized where
the velocity is maximum. For moderate and large values of the KC number, flow
separation precludes any analytical treatment of the problem which can be faced only
by numerical or physical experiments. The three-dimensional oscillatory flow around
a cylinder close to a wall has been studied by Kozakiewicz, Sumer & Fredsøe (1992)
who analysed the pressure correlation coefficient along the spanwise direction in order
to gain information about the correlation coefficient of the transverse sectional forces.
Present results agree with those of Kozakiewicz et al. (1992) in a qualitative sense
as in both cases the correlation coefficient of the transverse sectional force increases
when the distance from the wall increases.

Present results help to gain insight into the topology of the three-dimensional
vortex structures which develop for moderate values of KC and low values of Re
and into the effect of the gap over these structures. In order to identify the vortices,
we have used the procedure suggested by Jeong & Hussain (1995) according to
which the vortex structures are localized in the regions characterized by two negative
eigenvalues of the symmetric tensor D2 + Ω2, where D and Ω are the symmetric and
the antisymmetric parts of the velocity gradient tensor.

To check whether the cylinder length used in our simulation appreciably affects
the numerical results, we have computed the spanwise velocity autocorrelation where
three-dimensional vortex structures appear. It has been verified that the correlation
coefficient decays in less than half cylinder length (see Moin & Mahesh 1998). The
parameter of the numerical simulations are reported in table 2.

4.1. Re = 200

The three-dimensional vortices observed by Tatsuno & Bearman (1990) show the
presence of a fundamental wavelength ranging from 3.5 to 6 for 10 <β < 40; therefore,
an axial length Lx3

equal to 10 allows the development of short axial modes. In
figure 17 the regions characterized by negative second eigenvalue λ2 (λ1 � λ2 � λ3) of
the tensor D2 + Ω2 is shown during a cycle for e = 1.5.

It can be observed that the spanwise vortices generated by flow separation exhibit
significant modulation along the axial direction. Moreover, three-dimensional vortices
quasi-aligned with (x1, x2) planes can be detected and can cause the distortion of the
spanwise vortices immediately after their generation. In particular, in figure 17(b) a
spanwise vortex is shed from the lower side of the cylinder. In figure 17(c,d ) we can
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Figure 17. Isosurface of the second eigenvalue (λ2 = −0.1) for Re = 200 and e = 1.5 during
the 79th cycle; (a) φ =0, (b) φ = π/4, (c) φ = π/2, (d ) φ = 3π/4.
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Figure 18. Time development of the in-line force F1 (a) and of the transverse force F2 (b),
computed by a three-dimensional simulation for Re = 200 and e = 1.5; n indicates the number
of cycles.

observe the presence of a modulated main vortex structure and additional small-scale
vorticity.

In the present case the forces appear affected by the flow three-dimensionality as
can be elucidated by comparing figure 18, where the time development of the forces
for the present three-dimensional simulation is reported, with figure 5.
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Figure 19. In-line sectional force F s
1 (a) and transverse sectional force F s

2 (b) along the
cylinder at different phases during the 79th cycle for Re = 200 and e = 1.5. Continuous line
φ = 0, dashed line φ = π/4, dotted line φ = π/2, dashed-dotted line φ = 3π/4.

A visual inspection shows that the average in-line force exhibits a reduction while
the average transverse force appears to be substantially unchanged.

The drag and the hydrodynamic mass coefficients are significantly different from
those obtained by the two-dimensional simulation (see figure 13). An analogous
behaviour has been observed by Bearman (1997) who compared the drag and the
hydrodynamic mass coefficients computed by two-dimensional numerical simulations
with those obtained from experiments for a wall-free cylinder. Indeed the previous
author found that for KC = 10 the drag coefficient obtained experimentally was
larger than the one computed by two-dimensional simulations while the contrary
was observed for the hydrodynamic mass coefficient. The previous discrepancy was
ascribed by the author to three-dimensional flow features which cannot be reproduced
by a two-dimensional numerical simulation. The results shown in figure 13 for e = 1.5
are in agreement with the conclusions of Bearman (1997).

As concerns the amplitudes F +
2 and F −

2 of the transverse force shown in figure 14
for e =1.5 they are close to those obtained by the two-dimensional simulation. In
figure 19 the axial distribution of the sectional forces per unit length, along the
cylinder, is reported.

Generally the sectional force is far from being constant along the axial direction.
In the present case the transverse force exhibits the larger spatial fluctuations at
φ = π/2 and φ = 3π/4. Interestingly, we can observe that the spatial fluctuation of the
sectional forces can be as large as the averaged value along the axial direction. Such
a phenomenon has been observed in Nehari et al. (2004a) and it is attributed to the
fact that vortices shed in cells and since the cells are out of phase they give rise to a
large oscillation of the sectional forces along the cylinder (Sumer & Fredsøe 1997).
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Figure 20. Isosurface of the second eigenvalue (λ2 = −0.1) for Re =200 and e = 0.625 during
the 116th cycle; (a) φ = 0, (b) φ = π/4, (c) φ = π/2, (d ) φ =3π/4.

When e is equal to 0.625 the two-dimensional flow appears to be more stable with
respect to e = 1.5 as shown in figure 20 where the isosurfaces of a negative eigenvalue
λ2 are shown. In particular, in this case the vortices are essentially two-dimensional
just after their generation. See, for example, the vortex on the left side of the cylinder
in figure 20(a) (note that the coordinate of the axis of the cylinder are x1 = 11.5,
x2 = 0). As the flow accelerates, vortices start to be shed from both the upper and
the lower sides of the cylinder (figure 20b). The vortex that grows on the lower side
induces the formation of a vortex of opposite sign on the wall. At φ = π/2 a first
vortex is shed from the lower side which couples with the one generated on the
wall. We observe again that at this stage the vortices are quasi two-dimensional; in
the following the continuous interaction with the three-dimensional flow causes their
distortion and breakdown into smaller vortices.

In order to better visualize the three-dimensional vortex structures, the results
plotted in figure 20(b) have been replotted in figure 21 for a lower value of |λ2|.
We underline that a different point of view is used in this figure with respect to the
previous ones.

The presence of three pairs of three-dimensional vortices can be easily detected,
which are separated by an average axial length equal to 3.3. Since according
to the Stokes’ circulation theorem the vorticity flux across a x1 = const plane as
well as a x2 = const plane must be zero, it is expected that the three-dimensional
vortex structures will be constituted by pairs of counter-rotating vortices. Indeed in
figure 21(b), which shows the vorticity Ωx1

on a vertical plain containing the axis of the
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cylinder, it can be observed that the three-dimensional vortex structures in figure 21
are constitutes by vortices of the opposite sign. Such three-dimensional vortices are
generated by the vortex line tilting mechanism which causes the alignment of spanwise
vortices with (x1, x2) planes. Once the three-dimensional vortices are generated, their
decay by viscous diffusion is counteracted by the vortex line stretching mechanism
which takes place more vigorously at the saddle points of the velocity field (Hussain
1986) which are generated by pairs of spanwise vortices.

Such mechanism for intensification of three-dimensional vorticity has also been
shown to operate in an oscillatory flow over a rippled wall by Blondeaux, Scandura &
Vittori (2004), where spanwise vortices are generated by flow separation at the ripple
crests.

As concerns the time development of the forces (not shown) it appears more regular
than that shown in figure 7 and computed by a two-dimensional simulation. Such a
result is due to the fact that in the three-dimensional case the forces are due to the
averaged effect of different flow configurations along the axis of the cylinder which
are out of phase.

As regards the drag and the hydrodynamic mass coefficient shown in figure 13, they
attain about the same values of the two-dimensional simulation while the amplitude
of the transverse force (figure 14) appears slightly reduced.

In figure 22 the isosurfaces of λ2 for e = 0.25 and Re = 200 are shown. Although
three-dimensional vortex structures can be detected, their influence on the time
development of the forces appears to be weaker with respect to the previous cases.
Indeed, by comparing figure 23 with figure 9 for n larger than 1250, we observe that
the amplitude of the forces are very similar and that they oscillate periodically in
both cases. The only difference that we can observe is a lower value of the second
peak of the transverse force in the three-dimensional case (for a comparison see also
figure 10 for e = 0.25).

Figure 24 shows that the in-line sectional force is almost constant along the axis
of the cylinder at every phase. On the other hand, large oscillation are experienced
by the transverse sectional force at φ = π/4. This phase is very close to the one at
which the transverse force attains its maximum value (see figure 10 for e = 0.25).
It should be remembered that at this phase a high value of the transverse force
occurs, which is due to the shift of the stagnation point in a place close to the wall
because of the two-dimensional vortex structures generated by flow separation. In



282 P. Scandura, V. Armenio and E. Foti

2

(a)

1X2

X1

X3

0

6
8

10
12

14
16 10

8

6

4

2

0

2

(b)

1X2

X1

X3

0

6
8

10
12

14
16 10

8

6

4

2

0

2

(c)

1X2

X1

X3

0

6
8

10
12

14
16 10

8

6

4

2

0

2

(d)

1X2

X1

X3

0

8
10

12
14

16
18 10

8

6

4

2

0

Figure 22. Isosurface of the second eigenvalue (λ2 = −0.1) for Re =200 and e = 0.25 during
the 20th cycle; (a) φ =0, (b) φ = π/4, (c) φ = π/2, (d ) φ = 3π/4.
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Figure 23. Time development of the in-line force F1 (a) and of the transverse force F2

(b), computed by a three-dimensional simulation for Re = 200 and e = 0.25; n indicates the
number of cycles.

the presence of a three-dimensional flow such structures undergo modulation in the
spanwise direction, and therefore the stagnation point changes location along the
axis of the cylinder giving rise to an oscillation of the transverse sectional force. As
regards the force coefficients shown in figure 13 and the amplitudes of the transverse
force shown in figure 14, in the present case they assume values very close to those
obtained by the two-dimensional simulation.
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Figure 24. In-line sectional force F s
1 (a) and transverse sectional force F s

2 (b) along the
cylinder at different phases during the 20th cycle for Re = 200 and e =0.25. Continuous line
φ = 0, dashed line φ = π/4, dotted line φ = π/2, dashed-dotted line φ = 3π/4.

4.2. Re = 500

When the Reynolds number is increased to 500, larger convective effects develop
in the flow causing the formation of a large number of small three-dimensional
vortex structures whose resolution requires the use of a finer grid with respect to
the previous case. Therefore, in order to reduce the mesh size along the x3 direction,
the spanwise length Lx3

of the computational box has been reduced to 6 diameters.
This length is sufficient to allow the development of short spatial modes. The velocity
autocorrelation computed along the spanwise direction has been verified as decaying
within 1. However, to perform the simulations we needed to increase the spatial
resolution, and numerical tests showed that the use of 120 grid points along x3

represents a good compromise between computational costs and spatial resolution.
The parameters of the simulations are summarized in table 2.

In figure 25 the isosurfaces of λ2 are shown at four phases during a cycle for e = 1.5
(the axis of the cylinder is at x1 = 18, x2 = 0). The comparison with figure 17 shows
that in the present case a larger number of three-dimensional vortices are generated.
In figure 25(a) most of these three-dimensional vortices are detected close to the wall
and span from beneath the cylinder to the lower side of the large vortex at about
x1 = 15. Since these vortices are characterized by an alternating sign (see the related
discussion in § 4.1), they play an important role in the mixing by ejecting slow fluid
from the wall towards the irrotational region.

In figures 26 and 27 the forces for e = 1.5 obtained by the two-dimensional and the
three-dimensional simulations are reported respectively for comparison. A decrease
of the forces can be noted in the three-dimensional case with respect to the two-
dimensional one which appears larger for the in-line force. As regards the force
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Figure 25. Isosurface of the second eigenvalue (λ2 = −0.8) for Re = 500 and e = 1.5 during
the 30th cycle; (a) φ =0, (b) φ = π/4, (c) φ = π/2, (d ) φ = 3π/4.
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Figure 26. Time development of the in-line force F1 (a) and of the transverse force F2

(b) computed by a two-dimensional simulation for Re = 500 and e = 1.5; n indicates the
number of cycles.

coefficients in figure 13, we have the same qualitative results already discussed for
Re = 200.

From a comparison of the sectional forces shown in figure 28 with that shown in
figure 19 for Re = 200, an increased number of axial modulations can be detected in
the present case due to the smaller size of the three-dimensional vortex structures.
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Figure 27. Time development of the in-line force F1 (a) and of the transverse force F2

(b), computed by a three-dimensional simulation for Re = 500 and e = 1.5; n indicates the
number of cycles.
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Figure 28. In-line sectional force F s
1 (a) and transverse sectional force F s

2 (b) along the
cylinder at different phases during the 30th cycle for Re = 500 and e = 1.5. Continuous line
φ = 0, dashed line φ = π/4, dotted line φ = π/2, dashed-dotted line φ = 3π/4.

In figure 29 the three-dimensional vortex structures are shown for the case
characterized by e = 0.25. By a visual inspection the structure of the vorticity field
appears more intricate with respect to the previous case.

In figure 29(b) we observe that a vortex starts to be generated in the lower side of
the cylinder and induces a vortex of opposite sign on the wall. These vortices are still
evident in figure 29(c) where they maintain a two-dimensional character. However, at
about φ = π/2 − 3π/4 a strong interaction with the three-dimensional vorticity field
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Figure 29. Isosurface of the second eigenvalue (λ2 = −0.8) for Re =500 and e = 0.25 during
the 6th cycle; (a) φ = 0, (b) φ = π/4, (c) φ = π/2, (d ) φ = 3π/4.
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Figure 30. Time development of the in-line force F1 (a) and of the transverse force F2

(b) computed by a two-dimensional simulation for Re = 500 and e = 0.25; n indicates the
number of cycles.

takes place, and gives rise to the breakdown of the spanwise vortices and to the
partial turning of the vortex line with the flow direction.

In figures 30 and 31 the forces for e = 0.25 in the two-dimensional and the three-
dimensional cases are reported respectively. We observe that the amplitude of the
in-line force is similar to that obtained by the two-dimensional simulation, hence in
the two cases the force coefficients take values very close to each other (figure 13). As
regards the transverse force the results show a decrease of its amplitude with respect
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Figure 31. Time development of the in-line force F1 (a) and of the transverse force F2

(b), computed by a three-dimensional simulation for Re = 500 and e = 0.25; n indicates the
number of cycles.
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Figure 32. In-line sectional force F s
1 (a) and transverse sectional force F s

2 (b) along the
cylinder at different phases during the 6th cycle for Re = 500 and e =0.25. Continuous line
φ = 0, dashed line φ = π/4, dotted line φ = π/2, dashed-dotted line φ = 3π/4.

to the two-dimensional simulation, therefore in figure 14 a decrease of F +
2 and of F −

2

can also be observed.
Even though the oscillating character of the sectional forces (see figure 32) along the

axis of the cylinder appears to be larger than that shown in figure 24 for Re = 200, an
appreciable increase of the amplitude of the oscillations cannot be observed. Probably
the increase of the number of fine three-dimensional vortex structures partially acts
towards a homogenization of the dynamic actions on the cylinder. With this respect,
the analysis of the spectrum of the streamwise component of the velocity along the
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Figure 33. Spectrum of the streamwise velocity component u1 along the line (x1, x2) = (19.37,
0) at φ = 3π/4 for Re = 500 and e = 0.25; k is the wavenumber, A is the amplitude of the
harmonic components.

line x =19.37, y = 0 at φ = 3π/4, namely in the wake of the cylinder, shows energy
distributed along a wide range of wave modes, decaying with a slope equal to −5/3
(figure 33), typical of three-dimensional nonlinear vortex dynamics. These results also
show that by increasing the Reynolds number beyond 500 we would get in a turbulent
regime where the energy cascade reaches the dissipative range and thus the numerical
simulation would require a much finer computational grid.

5. Conclusions
In this paper the oscillatory flow around a circular cylinder close to a wall has

been studied by numerical integration of the Navier–Stokes equations for KC = 10
and Re = 200 and 500.

The simulations performed by assuming a two-dimensional flow have shown that
for moderate values of the gap-to-diameter ratio e, the ejection of vortex pairs along
a diagonal direction, observed for a wall-free cylinder, is still present. When e is small
(e = 0.25) the ejection of vortex pairs is suppressed.

As regards the behaviour of the hydrodynamic forces, for large values of e, large
variations are recorded from cycle to cycle. This is attributed to the fluctuation in time
of the inclination angle of vortex shedding and to the irregular switching occurring in
the diagonal regimes from a vortex pattern to its mirror image one. For Re = 200, the
decrease of e leads to a transition from an aperiodic to a periodic behaviour which is
attained for e = 0.25. On the other hand, for Re =500 the flow remains aperiodic for
values of e as small as 0.158. This value is equivalent to e = 0.25 of the Re = 200 case,
regarding the gap made non-dimensional with the thickness of the Stokes boundary
layer developing on the wall. This indicates that the transition from the aperiodic
motion to the periodic one does not depend on a single flow parameter. Whether
or not it is possible to find a value of e such to obtain a periodic regime in the
high-Reynolds-number case still remains an open issue.

According to previous experimental findings, the force coefficients of the in-line
force increase when the cylinder approaches the wall. Therefore, the use of the force
coefficients obtained for a wall-free cylinder is not conservative when the cylinder
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is placed close to a wall. Such a growth is related to the reduction of the angle
of ejection of the vortices shed from the cylinder induced by the impenetrability
condition of the wall. The alignment of the direction of ejection of the vortex
structures with the wall also induces a reduction of the transverse force. When e

further decreases, such a phenomenon, which is essentially inviscid, is overwhelmed
by the close interaction between the vortices shed from the cylinder and the shear
layer generated on the wall. These effects become large when the cylinder is placed
very close to the wall and cause the increase of the positive amplitude of the
transverse force and the decrease of the negative one. Therefore, the transverse force
is not monotonic with the reduction of the gap. In particular, large positive peaks
of the transverse force are observed for small gaps which are due to the shift of the
stagnation points to positions closer to the wall because of the presence of a vortex
structure. Three-dimensional simulations have been carried out to investigate how
three-dimensional features modify vortex structures and the induced hydrodynamic
forces. For the flow regimes herein investigated the flow field is unstable with respect
to spanwise perturbations. The instability leads to the generation of three-dimensional
vortices which cause the distortion of the two-dimensional ones along the spanwise
direction. As regards the effect of the three-dimensional flow on the forces, for
e = 1.5 the coefficients CD and CM are significantly different from that computed by
two-dimensional simulations. As the cylinder approaches the wall the effect of the
flow three-dimensionality on the hydrodynamic forces tends to be suppressed and
three-dimensional simulations produce closer results to the two-dimensional ones,
especially for Re = 200. In particular, in the case characterized by Re =200 and
e = 0.25, the three-dimensional effects leave the time-periodic behaviour of the forces
essentially unaltered. However, the three-dimensional flow induces oscillations of
significant amplitude of the sectional forces along the axis of the cylinder, which are
larger for the transverse sectional force; this is due to a torsional effect of the main
two-dimensional vortex structures along the axial direction. In the large-Reynolds-
number case small-scale spanwise modes develop, and this effect is increased with
the reduction of the gap. This produces a homogenization of the velocity field along
the axial direction and thus tends to decrease the axial variation of the sectional
forces. Our results corroborate and extend the analysis of Bearman (1997) who
argued that three-dimensional effects may alter the force coefficients with respect to
equivalent two-dimensional cases. In fact, we find that when three-dimensional effects
are important, noticeable variations of the force coefficients are found with respect
to the two-dimensional cases, whereas such differences decrease with the suppression
of three-dimensionality in the flow field. The present analysis might be of support to
the use of two-dimensional solvers for the study of oscillatory flow around cylinders
placed very close to a plane wall.

REFERENCES

Ali, N. & Narayanan, R. 1986 Forces on cylinders oscillating near a plane boundary. In Proceedings
of the 5th International Offshore Mechanics and Artic Engineering (OAME) Symposium, Tokyo,
Japan, pp. III: 613–619.

Bearman, P. 1997 Bluff body hydrodynamics. In Twenty-First Symposium on Naval Hydrodynamics ,
Troudheim, Norway, June 24-28, 1996, pp. 561–579.

Blondeaux, P., Scandura, P. & Vittori, G. 2004 Coherent structures in an oscillatory separated
flow: numerical experiments. J. Fluid Mech. 518, 215–229.
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